mini mosfet audio amp design

Here's an interesting schematic:

formatting link

I was wondering what R7 would be connected to. (It's not clear in the picture.)

What do you guys think of the schematic, overall? A good project for a beginner?

Michael

Reply to
mrdarrett
Loading thread data ...

That's some goofy European schematic convention. R4 is a pot, and R7 is connected to its wiper. R4 sets the fet idle currents.

It's OK as a project I guess. R3 and R4 wouldn't be necessary if the bias design were more rigorous, but then you get to play with this one, and make asymmetric clipping and crossover distortion just for fun.

You can also fry the fets if you set the pots right/wrong. In fact, that's pretty much the default setting.

John

Reply to
John Larkin

Fry the fets if I set the pots right, even?

default setting is Kablooie?

hmm... and here I thought my biggest problem was finding such a large transformer to drive the thing... I considered taking a surplus ATX power supply and working between the -12 and +12 VDC to get 24V max.

Thanks,

Michael

Reply to
mrdarrett

Since it's still too early or Fourth of July fireworks shows, can you (or anyone) recommend a link to a low-parts-count, 20W or so into 8- ohms audio amplifier? Input will be from a laptop or MP3 player, so no preamp necessary.

Thanks,

Michael

Reply to
mrdarrett

The wiper of potentiometer R4.

Bob

Reply to
sycochkn

The intent is to provide enough voltage between the two gates so that both fets are just biased. For bipolar output stages, a VBE multiplier would be used. For fets, a replica scheme would get you closer. I don't see my copy of Randy Sloan's amplifier design book handy, but that would be good reading material. I recall some design where they used a LED for the voltage drop, but that isn't a replica bias by any means.

Those computer switches act funny under light loads. I'm not sure I'd suggest using one.

formatting link
has some good reading. In fact, the more I think of the schematic you presented, the more I don't like it, if only that it looks "touchy." Using more components is often simple if the bias scheme is more tolerant.

Reply to
miso

On a sunny day (Thu, 20 Mar 2008 20:02:45 -0700 (PDT)) it happened snipped-for-privacy@gmail.com wrote in :

formatting link
You still need a decent transformer, forget about using PC supplies. But this one works fine, it drives a bass speaker now.

Reply to
Jan Panteltje

It's not the way I'd draw a potnetiometer, and it wouldn't pass muster with the drafting office of any of the European firms I've worked for.

You'd want to start off with no bias voltage between the MOSFET gates (pure class B operation), and monitor the no load current drawn by the amplifier as you used the pontentiometer R4 to increase this voltage (to bring you into class AB).

It is the crudest possible biasing scheme. The MOSFET gate-to-source voltage is temperature dependent

formatting link
?pgno=3D4

and tends to decrease with increasing temperature at "low" drain currents, leading to a risk of thermal runaway.

-- Bill Sloman, Nijmegen

Reply to
bill.sloman

wrote in message news: snipped-for-privacy@d21g2000prf.googlegroups.com...

Here is a circuit I came up with using LTSpice. It can put out about 25 watts into 4 ohms, (10 VRMS) with an input of 800 mV. The power supply is not critical, and there are no tricky bias adjustments. It draws only 400 mW (10 mA) with no input. But it works only for high input levels. This can be fixed by using an op-amp and feedback. I'll post a circuit for that later. But this should be a pretty good core amplifier block. Also, it uses N-channel MOSFETs for the output power, so you don't need to worry about complementary pair matching.

Paul

===========================================================================

Version 4 SHEET 1 1304 744 WIRE 128 -208 -192 -208 WIRE 240 -208 128 -208 WIRE 480 -208 240 -208 WIRE 128 -128 128 -208 WIRE 240 -112 240 -208 WIRE 480 -80 480 -208 WIRE 80 -64 48 -64 WIRE 48 -32 48 -64 WIRE 128 -16 128 -32 WIRE 240 0 240 -32 WIRE 432 0 240 0 WIRE 48 80 48 48 WIRE 128 80 128 64 WIRE 128 80 48 80 WIRE 128 128 128 80 WIRE 240 128 192 128 WIRE -192 144 -192 -208 WIRE 480 144 480 16 WIRE 528 144 480 144 WIRE 624 144 592 144 WIRE 656 144 624 144 WIRE 480 224 480 144 WIRE 480 224 352 224 WIRE 656 224 656 144 WIRE 352 272 352 224 WIRE 240 288 240 256 WIRE 304 288 240 288 WIRE 480 288 480 224 WIRE 128 304 128 128 WIRE -80 368 -96 368 WIRE -64 368 -80 368 WIRE 32 368 0 368 WIRE 80 368 32 368 WIRE 432 368 352 368 WIRE 240 384 240 288 WIRE 32 416 32 368 WIRE 128 416 128 400 WIRE 352 416 352 368 WIRE -96 432 -96 368 WIRE -192 560 -192 224 WIRE -96 560 -96 512 WIRE -96 560 -192 560 WIRE 32 560 32 496 WIRE 32 560 -96 560 WIRE 128 560 128 496 WIRE 128 560 32 560 WIRE 160 560 128 560 WIRE 240 560 240 464 WIRE 240 560 160 560 WIRE 352 560 352 496 WIRE 352 560 240 560 WIRE 480 560 480 384 WIRE 480 560 352 560 WIRE 656 560 656 304 WIRE 656 560 480 560 WIRE 160 608 160 560 FLAG 160 608 0 FLAG -80 368 Vin FLAG 624 144 Vout SYMBOL voltage -192 128 R0 WINDOW 123 0 0 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V2 SYMATTR Value 40 SYMBOL voltage -96 416 R0 WINDOW 3 -75 232 Left 0 WINDOW 123 24 44 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value SINE(0 1.25v 5k 1u 0 0 5000) SYMATTR Value2 AC 1 SYMATTR InstName V1 SYMBOL nmos 432 -80 R0 SYMATTR InstName M1 SYMATTR Value STD30NF06L SYMBOL nmos 432 288 R0 SYMATTR InstName M2 SYMATTR Value STD30NF06L SYMBOL pmos 304 368 M180 SYMATTR InstName M3 SYMATTR Value IRF7205 SYMBOL res 336 400 R0 SYMATTR InstName R2 SYMATTR Value 1k SYMBOL res 640 208 R0 SYMATTR InstName R8 SYMATTR Value 4 SYMBOL polcap 528 160 R270 WINDOW 0 32 32 VTop 0 WINDOW 3 0 32 VBottom 0 SYMATTR InstName C3 SYMATTR Value 4700µ SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=35 Irms=2.03 Rser=0.033 MTBF=2000 Lser=0 mfg="Nichicon" pn="UPR1V472MRH" type="Al electrolytic" ppPkg=1 SYMBOL res 224 -128 R0 SYMATTR InstName R9 SYMATTR Value 10k SYMBOL res 224 368 R0 SYMATTR InstName R1 SYMATTR Value 10k SYMBOL diode 224 0 R0 SYMATTR InstName D1 SYMATTR Value 1N4148 SYMBOL diode 224 64 R0 SYMATTR InstName D2 SYMATTR Value 1N4148 SYMBOL diode 224 128 R0 SYMATTR InstName D3 SYMATTR Value 1N4148 SYMBOL diode 224 192 R0 SYMATTR InstName D4 SYMATTR Value 1N4148 SYMBOL cap 0 352 R90 WINDOW 0 0 32 VBottom 0 WINDOW 3 32 32 VTop 0 SYMATTR InstName C1 SYMATTR Value 1µ SYMATTR SpiceLine V=25 Irms=0 Rser=0.007 MTBF=0 Lser=0 mfg="TDK" pn="C3216X7RIE105M" type="X7R" ppPkg=1 SYMBOL njf 80 304 R0 SYMATTR InstName J1 SYMATTR Value 2N3819 SYMBOL res 112 400 R0 SYMATTR InstName R3 SYMATTR Value 200 SYMBOL res 112 -32 R0 SYMATTR InstName R4 SYMATTR Value 200 SYMBOL njf 80 -128 R0 SYMATTR InstName J2 SYMATTR Value 2N3819 SYMBOL res 32 -48 R0 SYMATTR InstName R5 SYMATTR Value 100k SYMBOL res 16 400 R0 SYMATTR InstName R6 SYMATTR Value 100k SYMBOL polcap 192 112 R90 WINDOW 0 0 32 VBottom 0 WINDOW 3 32 32 VTop 0 SYMATTR InstName C2 SYMATTR Value 100µ SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=63 Irms=900m Rser=0.1 MTBF=20000 Lser=0 mfg="Nichicon" pn="UPH1J101MRH" type="Al electrolytic" ppPkg=1 TEXT -176 688 Left 0 !.tran .5 TEXT 40 696 Left 0 !;ac oct 5 20 20000

Reply to
Paul E. Schoen

wrote in message news: snipped-for-privacy@d21g2000prf.googlegroups.com...

I finally got a reasonably decent amplifier design with LTSpice. It is essentially a high power op-amp. It can drive 37 watts into a 4 ohm load with 48 watts input at the start of clipping with a 40 volt supply, and it will work from 20 Hz to 20 kHz fairly well (according to the simulator). It only draws about 300 mW (15 mA) with no input.

There may be better circuits, but this one is simple and tolerant of power supply variations. It works at least from 24 to 48 VDC, and to within 3 volts of the supply rails. There is some crossover distortion but it doesn't look too bad. It's probably fine for a guitar amplifier. I might actually build this and see how it works for real.

Feel free to modify the design and see if it can be improved. It should be a good project for a beginner, and is especially good in that it can be simulated with LTSpice.

Good luck,

Paul

-------------------------------------------------------------------------------

Version 4 SHEET 1 1304 744 WIRE 656 -272 -256 -272 WIRE -416 -208 -672 -208 WIRE -64 -208 -416 -208 WIRE 128 -208 -64 -208 WIRE 480 -208 128 -208 WIRE 128 -160 128 -208 WIRE -64 -144 -64 -208 WIRE 480 -112 480 -208 WIRE -416 -64 -416 -208 WIRE 128 -32 128 -80 WIRE 256 -32 128 -32 WIRE 352 -32 256 -32 WIRE 432 -32 352 -32 WIRE -256 -16 -256 -272 WIRE -256 -16 -320 -16 WIRE -256 16 -256 -16 WIRE -320 32 -320 -16 WIRE 480 64 480 -16 WIRE 656 64 656 -272 WIRE 656 64 480 64 WIRE -672 128 -672 -208 WIRE -64 128 -64 -64 WIRE -64 128 -176 128 WIRE 256 128 256 -32 WIRE 480 144 480 64 WIRE 528 144 480 144 WIRE 624 144 592 144 WIRE 656 144 624 144 WIRE -320 160 -320 96 WIRE -288 160 -320 160 WIRE -256 160 -256 96 WIRE -256 160 -288 160 WIRE -64 176 -64 128 WIRE -16 176 -64 176 WIRE 656 224 656 144 WIRE -112 240 -224 240 WIRE -16 256 -16 176 WIRE 128 288 128 -32 WIRE 256 288 256 192 WIRE 352 288 256 288 WIRE 480 320 480 144 WIRE 480 320 352 320 WIRE -176 336 -176 128 WIRE 256 336 256 288 WIRE 304 336 256 336 WIRE -528 352 -576 352 WIRE -416 352 -416 16 WIRE -416 352 -448 352 WIRE -384 352 -416 352 WIRE -224 352 -224 304 WIRE -224 352 -384 352 WIRE -208 352 -224 352 WIRE 480 352 480 320 WIRE -112 368 -112 240 WIRE -112 368 -144 368 WIRE 32 368 -112 368 WIRE 80 368 32 368 WIRE -288 384 -288 160 WIRE -208 384 -288 384 WIRE 256 400 256 336 WIRE -576 416 -576 352 WIRE -384 416 -384 352 WIRE 32 416 32 368 WIRE 128 416 128 384 WIRE -288 432 -288 384 WIRE 352 432 352 416 WIRE 432 432 352 432 WIRE -64 448 -64 176 WIRE 352 464 352 432 WIRE -672 560 -672 208 WIRE -576 560 -576 496 WIRE -576 560 -672 560 WIRE -384 560 -384 496 WIRE -384 560 -576 560 WIRE -288 560 -288 512 WIRE -288 560 -384 560 WIRE -176 560 -176 400 WIRE -176 560 -288 560 WIRE -64 560 -64 512 WIRE -64 560 -176 560 WIRE -16 560 -16 320 WIRE -16 560 -64 560 WIRE 32 560 32 496 WIRE 32 560 -16 560 WIRE 128 560 128 496 WIRE 128 560 32 560 WIRE 176 560 128 560 WIRE 256 560 256 480 WIRE 256 560 176 560 WIRE 352 560 352 544 WIRE 352 560 256 560 WIRE 480 560 480 448 WIRE 480 560 352 560 WIRE 656 560 656 304 WIRE 656 560 480 560 WIRE 176 608 176 560 FLAG 176 608 0 FLAG -576 352 Vin FLAG 624 144 Vout SYMBOL voltage -672 112 R0 WINDOW 123 0 0 Left 0 WINDOW 39 0 0 Left 0 SYMATTR InstName V2 SYMATTR Value 40 SYMBOL voltage -576 400 R0 WINDOW 3 -75 232 Left 0 WINDOW 123 24 44 Left 0 WINDOW 39 0 0 Left 0 SYMATTR Value SINE(0 350m 2000 1u 0 0 5000) SYMATTR Value2 AC 1 SYMATTR InstName V1 SYMBOL nmos 432 -112 R0 SYMATTR InstName M1 SYMATTR Value STD30NF06L SYMBOL nmos 432 352 R0 SYMATTR InstName M2 SYMATTR Value STD30NF06L SYMBOL pmos 304 416 M180 SYMATTR InstName M3 SYMATTR Value IRF7205 SYMBOL res 336 448 R0 SYMATTR InstName R2 SYMATTR Value 1k SYMBOL res 640 208 R0 SYMATTR InstName R8 SYMATTR Value 4 SYMBOL polcap 528 160 R270 WINDOW 0 32 32 VTop 0 WINDOW 3 0 32 VBottom 0 SYMATTR InstName C3 SYMATTR Value 4700µ SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=35 Irms=2.03 Rser=0.033 MTBF=2000 Lser=0 mfg="Nichicon" pn="UPR1V472MRH" type="Al electrolytic" ppPkg=1 SYMBOL res 112 -176 R0 SYMATTR InstName R4 SYMATTR Value 2.2k SYMBOL res 240 384 R0 SYMATTR InstName R1 SYMATTR Value 220k SYMBOL diode 336 -32 R0 WINDOW 0 -34 32 Left 0 WINDOW 3 42 35 Left 0 SYMATTR InstName D1 SYMATTR Value 1N4148 SYMBOL diode 336 96 R0 WINDOW 0 -38 -28 Left 0 WINDOW 3 40 35 Left 0 SYMATTR InstName D2 SYMATTR Value 1N4148 SYMBOL diode 336 224 R0 WINDOW 0 -33 28 Left 0 WINDOW 3 39 -30 Left 0 SYMATTR InstName D5 SYMATTR Value 1N4148 SYMBOL res 112 400 R0 SYMATTR InstName R3 SYMATTR Value 100 SYMBOL res 16 400 R0 SYMATTR InstName R6 SYMATTR Value 100k SYMBOL Opamps\\\\LT1037A -176 304 R0 WINDOW 3 9 107 Left 0 SYMATTR InstName U1 SYMBOL res -432 336 R90 WINDOW 0 0 56 VBottom 0 WINDOW 3 32 56 VTop 0 SYMATTR InstName R12 SYMATTR Value 10k SYMBOL zener -48 512 R180 WINDOW 0 24 72 Left 0 WINDOW 3 24 0 Left 0 SYMATTR InstName D6 SYMATTR Value BZX84C15L SYMATTR Description Diode SYMATTR Type diode SYMBOL res -80 -160 R0 SYMATTR InstName R5 SYMATTR Value 4.7k SYMBOL polcap -32 256 R0 SYMATTR InstName C4 SYMATTR Value 100µ SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=63 Irms=900m Rser=0.1 MTBF=20000 Lser=0 mfg="Nichicon" pn="UPH1J101MRH" type="Al electrolytic" ppPkg=1 SYMBOL res -272 0 R0 SYMATTR InstName R7 SYMATTR Value 100k SYMBOL res -304 416 R0 SYMATTR InstName R9 SYMATTR Value 1k SYMBOL res -400 400 R0 SYMATTR InstName R11 SYMATTR Value 10k SYMBOL res -432 -80 R0 SYMATTR InstName R10 SYMATTR Value 1meg SYMBOL nmos 80 288 R0 WINDOW 3 49 86 Left 0 SYMATTR InstName M4 SYMATTR Value Si4850EY SYMBOL cap -336 32 R0 SYMATTR InstName C1 SYMATTR Value 10p SYMBOL cap -208 304 R180 WINDOW 0 24 64 Left 0 WINDOW 3 24 8 Left 0 SYMATTR InstName C2 SYMATTR Value 5p SYMBOL diode 336 32 R0 WINDOW 0 -33 98 Left 0 WINDOW 3 37 33 Left 0 SYMATTR InstName D3 SYMATTR Value 1N4148 SYMBOL diode 336 160 R0 WINDOW 0 -33 34 Left 0 WINDOW 3 40 94 Left 0 SYMATTR InstName D4 SYMATTR Value 1N4148 SYMBOL cap 240 128 R0 SYMATTR InstName C5 SYMATTR Value 5n TEXT -176 688 Left 0 !.tran .5 TEXT 40 696 Left 0 !;ac oct 5 20 20000

Reply to
Paul E. Schoen

If you want to build an audio amplifier I would suggest heading on over to

formatting link
Search for "gain clone". Its basically a 60- Watt amplifier using a LM3886 from National. You can find lots of Schematics, PCB layouts, BOM's etc.

-=Randy

Reply to
RandyKnutson

Yep, I was seriously considering the LM3886, from Jameco (Mouser doesn't have it) but then I wouldn't learn anything. ;-) Building from discrete components has a certain appeal to it.

Thanks,

Michael

Reply to
mrdarrett

This one looked really good:

formatting link

until I realized I'd have some trouble getting some of the parts.

Thanks y'all,

Michael

Reply to
mrdarrett

National Semiconductor LM1875, available from Digi-Key.

formatting link

The basic circuit uses 7 capacitors and 5 resistors, and that is including .1 and 100 uF capacitors from each supply rail to ground, and resistors to ground from both ends of the input coupling capacitor. No additional semiconductors are used in the basic circuit.

- Don Klipstein ( snipped-for-privacy@misty.com)

Reply to
Don Klipstein

I think the original poster was looking for more of an educational experience, i.e. discretes.

If I were to roll together a power amp, I'd be inclined to try some of those Class E chips.

Reply to
miso

Yep, I was looking for the discretes, but thanks anyway. Only 5 leads on the LM1875, eh...

Class E chips? Which ones?

Mouser has several Class D chips, but they all look hard to solder.

8-)

MD

Reply to
mrdarrett

Somebody is going to have to explain page 3 of this data sheet to me. Please don't tell me it is a misprint, as National has had six years to correct.

At a supply voltage of 15 volts, the curve shows 10 watts out.

Last I looked no single-supply design can drive to below zero or above supply rail without the use of some inductive tricks that the test circuit doesn't show.

So, converting a 15 volt peak-to-peak output signal (assuming that the device can swing to both rails) gives about 5.3 volts RMS.

The data sheet specifies an 8 ohm load, so given that Power = volts^2 / load yields about 3.5 watts out.

What gives?

Jim

--
"If you think you can, or think you can\'t, you\'re right."
        --Henry Ford



"Don Klipstein"  wrote in message 
news:slrnfug3sc.gjt.don@manx.misty.com...
>
>  National Semiconductor LM1875, available from Digi-Key.
>
> http://www.national.com/ds/LM/LM1875.pdf
>
>  The basic circuit uses 7 capacitors and 5 resistors, and that is
> including .1 and 100 uF capacitors from each supply rail to ground, and
> resistors to ground from both ends of the input coupling capacitor.  No
> additional semiconductors are used in the basic circuit.
>
> - Don Klipstein (don@misty.com)
Reply to
RST Engineering (jw)

It's a dual supply-- that's what the "+/-V" means on the X axis of

00503011.

10W into 8 ohms requires about +/-9V peak.

Best regards, Spehro Pefhany

--
"it\'s the network..."                          "The Journey is the reward"
speff@interlog.com             Info for manufacturers: http://www.trexon.com
Embedded software/hardware/analog  Info for designers:  http://www.speff.com
Reply to
Spehro Pefhany

Only thing I can think of - they're assuming (-15V) and (+15V) available.

If you go from 0-15V, you're right;

15 / SQRT(2) / 2 = 5.3V RMS; V^2/R = 3.5 W.

If we go (-15) to (+15), we take

30 / sqrt(2) / 2 = 10.6V; (10.6V)^2 / 8 ohm = 14 W out possible. With some going to heat.

Michael

Reply to
mrdarrett

To be honest, no. First, a circuit that needs potmeters where setting them wrong can cause stuff to blow up isn't my cuppa tea. Second, an audio power amp that requires a regulated supply isn't my cuppa tea either.

If I'd spend the time building an audio amp I'd go all out and build the biggest honking monster class-D amp the neighborhood has ever seen. The kind when one twang on the E-guitar causes the plaster to fall off the ceiling. That's what I did as a kid, except it wasn't class D and had tubes (and the laws came after some playing on the E-guitar ...)

--
Regards, Joerg

http://www.analogconsultants.com/
Reply to
Joerg

ElectronDepot website is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.