Cute little circuit

formatting link
(That feedback winding is part of the main transformer...)

Great regulation, as TL431 always provides. Efficiency probably around 50% at full output, not great but reasonable given the control method. PSRR isn't all that great, simply because the feedback network is VCC-referenced. Output ripple is in the mV.

Hmm, occurs to me Sloman will probably appreciate this. Though the distortion is obviously not very good, which isn't the point.

Tim

--
Deep Friar: a very philosophical monk.
Website: http://webpages.charter.net/dawill/tmoranwms
Reply to
Tim Williams
Loading thread data ...

Do you need the inductor?

--

John Larkin                  Highland Technology Inc
www.highlandtechnology.com   jlarkin at highlandtechnology dot com   

Precision electronic instrumentation
Picosecond-resolution Digital Delay and Pulse generators
Custom timing and laser controllers
Photonics and fiberoptic TTL data links
VME  analog, thermocouple, LVDT, synchro, tachometer
Multichannel arbitrary waveform generators
Reply to
John Larkin

Yeah, and lose the series 914s and use single UF400x diodes.

Reply to
tm

Waffor? 914s are low capacitance, low leakage and very short recovery time. Keeps switching noise down (as does the series inductor). The additional voltage drop is negligible.

Tim

--
Deep Friar: a very philosophical monk.
Website: http://webpages.charter.net/dawill/tmoranwms
Reply to
Tim Williams

Hey, let's optimize it. Cost, efficiency, parts count, reliability, ...

List the design requirements:

9 volts in, 100 volts out @ 3 ma., regulation, noise, ...

Anyway, two parts vs. four? Board space? Holes? Both are fast, both are low C, Both about the same cost though the 914 might beat it out with quantity.

Reply to
tm

It looks rather like a Baxandall class-D oscillator

formatting link

but the two 2N4401 switching transistors won't be getting enough base-drive to saturate, and will presumably run hot.

It might make more sense to PWM the voltage applied to the 270uH inductor - switching it between 0V and 9V - which is a configuration I've simulated, but the feedback would be a bit of a nightmare.

--
Bill Sloman, Nijmegen
Reply to
Bill Sloman

At low power levels, you get away with murder. Actually, at 500mW, the

50% efficiency is pretty good, considering the large number of parts.

Couldn't figure out if you were getting regulation by increasing the cross-conduction - a boost converter - or through base current starvation. I guess it has to be the latter because the frequency would normally be set by core saturation in this topology, and because you need it to start up (a handy feature in any supply).

Did you model it first? Will it model?

RL

Reply to
legg

They run linear for light loads, which isn't terrible as it's a light load. Efficiency vs. load and vs. supply voltage will vary more than otherwise.

I've tried it before on other occasions; you need a huge inductance if the switching frequency is not considerably higher than the oscillating frequency. I know of (relatively small) induction heaters which do this (replacing the transistors with IGBTs and a PLL); they use a 15kg choke to keep ripple low enough.

Also, the extra switching may introduce undesirable noise, say if it's used for a photodiode or avalanche supply.

Tim

--
Deep Friar: a very philosophical monk.
Website: http://webpages.charter.net/dawill/tmoranwms
Reply to
Tim Williams

Assuming low bias and small signal conditions, "cross conduction" will look more like a differential amplifier with lots of feedback. It never really runs out of voltage, so it'll tend to look more like an alternating beta-dependent current source.

Timing is provided by the 220pF on the secondary; surprisingly, frequency doesn't change much under load, despite the squashed waveform that would tend to suggest inductive or saturation induced commutation.

The frequency is on the low side for an FT50-43 at this number of turns, but the full-output waveform looks clean (a sine wave, somewhat skewed due to core nonlinearity and hysteresis losses I think).

Of course I did, on the best simulator available... Nature 1.0 ;-)

If it's switching due to saturation, it may still switch due to inductance alone, without using a nonlinear core model. I've seen that before with blocking oscillators. Saturation will commutate quicker, though.

One thing the simulation is almost guaranteed to miss is the squirrelies. At low power, the waveforms look funky due to myriad resonances (it doesn't maintain a clean/clamped sine appearance).

Tim

--
Deep Friar: a very philosophical monk.
Website: http://webpages.charter.net/dawill/tmoranwms
Reply to
Tim Williams

MMBD204 is a nice hv dual diode.

formatting link

formatting link

--

John Larkin                  Highland Technology Inc
www.highlandtechnology.com   jlarkin at highlandtechnology dot com   

Precision electronic instrumentation
Picosecond-resolution Digital Delay and Pulse generators
Custom timing and laser controllers
Photonics and fiberoptic TTL data links
VME  analog, thermocouple, LVDT, synchro, tachometer
Multichannel arbitrary waveform generators
Reply to
John Larkin

You could drive the center tap of the transformer from an emitter follower off +9, essentially linear regulate the input, still using the bandgap thing for error feedback.

--

John Larkin                  Highland Technology Inc
www.highlandtechnology.com   jlarkin at highlandtechnology dot com   

Precision electronic instrumentation
Picosecond-resolution Digital Delay and Pulse generators
Custom timing and laser controllers
Photonics and fiberoptic TTL data links
VME  analog, thermocouple, LVDT, synchro, tachometer
Multichannel arbitrary waveform generators
Reply to
John Larkin

=20

d.=20

9;ve=20

e=20

=20

o=20

Not knowing the exact currents, I can't say anything definitive, but my inc= lination would have been to PWM at twice the resonant frequency of the tran= sformer-capacitor LC - use a phase-locked loop to lock that frequency to th= e VCO in a 4046 running at close to 10MHz, then divide down to get a wavefo= rm or two which could be used to switch the 2N401s, and separately to get a= PWM waveform synch'd to twice that frequency.

Feed-back would control the on/off ratio on the voltage applied to the indu= ctor.

That would basically fiddle with the second harmonic current you've got flo= wing through the inductor anyway, and if you got the phase right you could = probably minimise that. Switching back and forth between the two almost rig= ht PWM on/off ratio's to get the output voltage right would introduce some = ripple, but not a great deal.

The digital logic would all fit into a smallish programmable logic device -= something bigger than a 22V10, but not all that much bigger. =20

ed=20

They survive. You've got to filter like hell after any kind of inverter. Yo= u can play trick to make the switching noise easier to filter out, but ther= e's always some ripple to get rid of.

--=20 Bill Sloman, Nijmegen

Reply to
Bill Sloman

Or, even better, drive the inductor from the emitter follower, taking advantage of the rather quieter switching of the Class-D Baxandall inverter, which was reputedly invented to make tolerably quiet high-voltage supplies for photo-multiplier tubes.

--
Bill Sloman, Nijmegen
Reply to
Bill Sloman

So your model was close. How did it model start up?

Oh. I get it. A little slow today. NatureSpice.....

RL

Reply to
legg

inclination would have been to PWM at twice the resonant frequency of the transformer-capacitor LC - use a phase-locked loop to lock that frequency to the VCO in a 4046 running at close to 10MHz, then divide down to get a waveform or two which could be used to switch the 2N401s, and separately to get a PWM waveform synch'd to twice that frequency.

through the inductor anyway, and if you got the phase right you could probably minimise that. Switching back and forth between the two almost right PWM on/off ratio's to get the output voltage right would introduce some ripple, but not a great deal.

something bigger than a 22V10, but not all that much bigger.

can play trick to make the switching noise easier to filter out, but there's always some ripple to get rid of.

This is a 500mW circuit.

RL

Reply to
legg

=20

What might be awkward is that each of the 2N4401 switching transistors is g= oing be be running as base-current-controlled current sink when it's on. Th= ere's no guarantee that they'll have the same current gain, so they'll pull= down one side of the transformer harder than the other. Presumably the cir= cuit sorts itself out, but it isn't exactly surprising that it gets "squirr= elly" under light loads.=20

se.=20

've =20

the=20

=20

is =20

e=20

inclination would have been to PWM at twice the resonant frequency of the t= ransformer-capacitor LC - use a phase-locked loop to lock that frequency to= the VCO in a 4046 running at close to 10MHz, then divide down to get a wav= eform or two which could be used to switch the 2N401s, and separately to ge= t a PWM waveform synch'd to twice that frequency.

nductor.

flowing through the inductor anyway, and if you got the phase right you cou= ld probably minimise that. Switching back and forth between the two almost = right PWM on/off ratio's to get the output voltage right would introduce so= me ripple, but not a great deal.

e - something bigger than a 22V10, but not all that much bigger.=20

=20

You can play trick to make the switching noise easier to filter out, but t= here's always some ripple to get rid of.

Ripple doesn't matter if the power levels is lower than 600mW?

--=20 Bill Sloman, Nijmegen

Reply to
Bill Sloman

On 7/27/2012 1:51 PM, legg wrote:

You can model it in LTSpice

Version 4 SHEET 1 1296 836 WIRE -1024 -320 -1072 -320 WIRE -880 -320 -960 -320 WIRE -48 -320 -880 -320 WIRE 176 -320 -48 -320 WIRE 368 -320 176 -320 WIRE -880 -288 -880 -320 WIRE 176 -272 176 -320 WIRE 368 -272 368 -320 WIRE 976 -272 864 -272 WIRE 1072 -272 976 -272 WIRE 1200 -272 1072 -272 WIRE -48 -240 -48 -320 WIRE 864 -192 864 -272 WIRE 368 -176 368 -208 WIRE 1200 -176 1200 -272 WIRE -880 -160 -880 -208 WIRE -336 -160 -880 -160 WIRE 176 -160 176 -208 WIRE 976 -144 976 -272 WIRE -880 -80 -880 -160 WIRE -336 -80 -336 -160 WIRE 864 -80 864 -128 WIRE -48 -32 -48 -160 WIRE -48 -32 -272 -32 WIRE 224 16 64 16 WIRE 448 16 224 16 WIRE 784 16 624 16 WIRE 864 16 864 -16 WIRE 864 16 784 16 WIRE 448 32 448 16 WIRE 64 48 64 16 WIRE 624 80 624 16 WIRE 784 80 784 16 WIRE 0 96 -160 96 WIRE 224 112 224 16 WIRE -160 128 -160 96 WIRE -1072 144 -1072 -320 WIRE 368 144 368 -96 WIRE 448 144 448 112 WIRE 448 144 368 144 WIRE 1072 144 1072 -272 WIRE 448 176 448 144 WIRE -880 192 -880 0 WIRE -528 192 -880 192 WIRE -336 240 -336 16 WIRE -160 240 -160 208 WIRE -160 240 -336 240 WIRE -528 256 -528 192 WIRE -160 272 -160 240 WIRE 624 272 624 160 WIRE 784 272 784 144 WIRE 784 272 624 272 WIRE 976 272 976 -80 WIRE 976 272 784 272 WIRE 992 272 976 272 WIRE 224 288 224 176 WIRE 448 288 448 256 WIRE 448 288 224 288 WIRE 864 288 864 16 WIRE 224 320 224 288 WIRE 992 352 992 272 WIRE -528 368 -528 336 WIRE -160 368 -160 352 WIRE 160 368 -160 368 WIRE 864 384 864 352 WIRE 1200 400 1200 -96 WIRE 64 448 64 144 WIRE 224 448 224 416 WIRE 224 448 64 448 WIRE -880 496 -880 192 WIRE -832 496 -880 496 WIRE -528 496 -528 432 WIRE -528 496 -576 496 WIRE 1200 496 1200 480 WIRE 1200 496 -528 496 WIRE 1200 528 1200 496 WIRE -880 624 -880 496 WIRE -832 624 -880 624 WIRE -544 624 -576 624 WIRE -48 624 -48 -32 WIRE 1200 640 1200 608 WIRE -544 688 -544 624 WIRE -544 688 -576 688 WIRE -1072 768 -1072 224 WIRE -544 768 -544 688 WIRE -544 768 -1072 768 WIRE -48 768 -48 704 WIRE -48 768 -544 768 WIRE 224 768 224 448 WIRE 224 768 -48 768 WIRE 784 768 224 768 WIRE 864 768 864 448 WIRE 864 768 784 768 WIRE 992 768 992 416 WIRE 992 768 864 768 WIRE 1072 768 1072 208 WIRE 1072 768 992 768 WIRE 1200 768 1200 720 WIRE 1200 768 1072 768 WIRE 784 816 784 768 FLAG 784 816 0 FLAG 176 -160 0 SYMBOL npn 160 320 R0 SYMATTR InstName Q1 SYMATTR Value 2N4401 SYMBOL npn 0 48 R0 SYMATTR InstName Q2 SYMATTR Value 2N4401 SYMBOL ind2 432 16 R0 SYMATTR InstName L1 SYMATTR Value 44µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL ind2 432 160 R0 SYMATTR InstName L2 SYMATTR Value 44µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL cap 208 112 R0 SYMATTR InstName C1 SYMATTR Value 2.2n SYMBOL ind2 608 64 R0 SYMATTR InstName L5 SYMATTR Value 4.4m SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL cap 768 80 R0 SYMATTR InstName C2 SYMATTR Value 220p SYMBOL diode 880 -16 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D1 SYMATTR Value 1N914 SYMBOL diode 880 -128 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D2 SYMATTR Value 1N914 SYMBOL diode 880 352 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D3 SYMATTR Value 1N914 SYMBOL diode 880 448 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D4 SYMATTR Value 1N914 SYMBOL cap 960 -144 R0 SYMATTR InstName C3 SYMATTR Value 6.8n SYMBOL cap 976 352 R0 SYMATTR InstName C4 SYMATTR Value 6.8n SYMBOL cap 1056 144 R0 SYMATTR InstName C5 SYMATTR Value 100n SYMBOL res 1184 -192 R0 SYMATTR InstName R1 SYMATTR Value 1000k SYMBOL res 1184 384 R0 SYMATTR InstName P1a SYMATTR Value 5k SYMBOL res 1184 512 R0 SYMATTR InstName P1b SYMATTR Value 5k SYMBOL res 1184 624 R0 SYMATTR InstName R4 SYMATTR Value 15k SYMBOL ind2 -144 224 R180 WINDOW 0 36 80 Left 2 WINDOW 3 36 40 Left 2 SYMATTR InstName L3 SYMATTR Value 4µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL ind2 -144 368 R180 WINDOW 0 36 80 Left 2 WINDOW 3 36 40 Left 2 SYMATTR InstName L4 SYMATTR Value 4µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL ind 352 -192 R0 SYMATTR InstName L6 SYMATTR Value 270µ SYMATTR SpiceLine Rser=1 Cpar=1p SYMBOL polcap 160 -272 R0 WINDOW 3 24 56 Left 2 SYMATTR InstName C6 SYMATTR Value 47µ SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=4 Irms=0 Rser=2.4 Lser=0 mfg="AVX" pn="TAJB476M004" type="Tantalum" SYMBOL References\\LT1431 -704 592 R0 SYMATTR InstName U1 SYMBOL res -64 -256 R0 SYMATTR InstName R2 SYMATTR Value 10k SYMBOL res -64 608 R0 SYMATTR InstName R3 SYMATTR Value 22k SYMBOL res -896 -304 R0 SYMATTR InstName R5 SYMATTR Value 1k SYMBOL pnp -272 16 R180 SYMATTR InstName Q3 SYMATTR Value 2N3906 SYMBOL cap -544 368 R0 SYMATTR InstName C7 SYMATTR Value 10n SYMBOL res -896 -96 R0 SYMATTR InstName R6 SYMATTR Value 1k SYMBOL res -544 240 R0 SYMATTR InstName R7 SYMATTR Value 47k SYMBOL voltage -1072 128 R0 WINDOW 123 0 0 Left 2 WINDOW 39 0 0 Left 2 SYMATTR InstName V1 SYMATTR Value 9 SYMBOL FerriteBead -992 -320 R90 WINDOW 0 -16 0 VBottom 2 SYMATTR InstName L7 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL FerriteBead 368 -240 R180 SYMATTR InstName L8 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" TEXT 368 352 Left 2 !K1 L1 L2 L3 L4 L5 0.999 TEXT 552 104 Left 2 ;| TEXT 552 128 Left 2 ;| TEXT 536 104 Left 2 ;| TEXT 536 128 Left 2 ;| TEXT -728 816 Left 2 !.tran 0 5m 0 10n startup

I'm not sure that I've got the transformer inductances right - I found the relevant toroids on the web, and plugged in the numbers of turns, but the simulation oscillates at 8MHz, which seems a bit quick.

I've not gone to any trouble to get the resistances of the windings right -the extra inductor/ferrite bead at L8 is needed to damp ringing in L6, but a realistic winding resistance would probably do the same job.

The circuit - as modelled - isn't very efficient. The current through L6 settles down at about 106mA, which makes it a 1W circuit, rather than 500mW.

If Tim comes back to us with more realistic values for the component parameters, we should get closer to what he seems to have seen.

--
Bill Sloman, Nijmegen
Reply to
Bill Sloman

I've now cleaned up my original model, by adding the ferrite beads L9 and L10 to stop the high voltage generator messing up the inverter so that the inverter now oscillates at a reasonable 135kHz, rather than

8MHz. The rest of the extra components stop all the other oscillations (more or less). John Larkin's idea might be rather easier to put into practice.

Version 4 SHEET 1 1296 836 WIRE -960 -640 -1072 -640 WIRE -880 -640 -896 -640 WIRE -752 -640 -880 -640 WIRE -192 -640 -752 -640 WIRE -96 -640 -192 -640 WIRE 0 -640 -96 -640 WIRE -1072 -592 -1072 -640 WIRE -1024 -592 -1072 -592 WIRE 96 -592 -960 -592 WIRE 176 -592 96 -592 WIRE 368 -592 176 -592 WIRE -880 -560 -880 -640 WIRE -752 -560 -752 -640 WIRE 0 -560 0 -640 WIRE 96 -544 96 -592 WIRE 176 -544 176 -592 WIRE 368 -544 368 -592 WIRE -96 -512 -96 -640 WIRE -192 -480 -192 -640 WIRE 368 -448 368 -480 WIRE -880 -432 -880 -480 WIRE -752 -432 -752 -496 WIRE -752 -432 -880 -432 WIRE -592 -432 -752 -432 WIRE -336 -432 -512 -432 WIRE 0 -432 0 -496 WIRE 96 -432 96 -480 WIRE 96 -432 0 -432 WIRE 176 -432 176 -480 WIRE 176 -432 96 -432 WIRE 176 -400 176 -432 WIRE -336 -304 -336 -432 WIRE 896 -272 864 -272 WIRE 976 -272 960 -272 WIRE 1072 -272 976 -272 WIRE 1200 -272 1072 -272 WIRE -192 -256 -192 -416 WIRE -192 -256 -272 -256 WIRE -96 -256 -96 -432 WIRE -96 -256 -192 -256 WIRE 864 -192 864 -272 WIRE 1200 -176 1200 -272 WIRE -96 -160 -96 -256 WIRE 976 -144 976 -272 WIRE -880 -80 -880 -432 WIRE -336 -80 -336 -208 WIRE 864 -80 864 -128 WIRE -96 -32 -96 -80 WIRE -96 -32 -272 -32 WIRE -96 16 -96 -32 WIRE -16 16 -96 16 WIRE 224 16 64 16 WIRE 448 16 224 16 WIRE 784 16 624 16 WIRE 864 16 864 -16 WIRE 864 16 784 16 WIRE 448 32 448 16 WIRE 64 48 64 16 WIRE 624 80 624 16 WIRE 784 80 784 16 WIRE 0 96 -160 96 WIRE 224 112 224 16 WIRE -160 128 -160 96 WIRE -1072 144 -1072 -592 WIRE 368 144 368 -368 WIRE 448 144 448 112 WIRE 448 144 368 144 WIRE 1072 144 1072 -272 WIRE 448 176 448 144 WIRE -880 192 -880 0 WIRE -528 192 -880 192 WIRE -336 240 -336 16 WIRE -160 240 -160 208 WIRE -160 240 -336 240 WIRE -528 256 -528 192 WIRE -160 272 -160 240 WIRE 624 272 624 160 WIRE 784 272 784 144 WIRE 784 272 624 272 WIRE 976 272 976 -80 WIRE 976 272 784 272 WIRE 992 272 976 272 WIRE 224 288 224 176 WIRE 448 288 448 256 WIRE 448 288 224 288 WIRE 864 288 864 16 WIRE 224 320 224 288 WIRE 992 352 992 272 WIRE -528 368 -528 336 WIRE -160 368 -160 352 WIRE 160 368 -160 368 WIRE 864 384 864 352 WIRE 1200 400 1200 -96 WIRE 64 448 64 144 WIRE 224 448 224 416 WIRE 224 448 64 448 WIRE -880 496 -880 192 WIRE -832 496 -880 496 WIRE -528 496 -528 432 WIRE -528 496 -576 496 WIRE -336 496 -528 496 WIRE -256 496 -336 496 WIRE 1200 496 1200 480 WIRE 1200 496 -192 496 WIRE 1200 528 1200 496 WIRE -16 544 -16 16 WIRE 864 544 864 448 WIRE -336 592 -336 496 WIRE -880 624 -880 496 WIRE -832 624 -880 624 WIRE -544 624 -576 624 WIRE -96 624 -96 16 WIRE 1200 640 1200 608 WIRE -544 688 -544 624 WIRE -544 688 -576 688 WIRE -1072 768 -1072 224 WIRE -544 768 -544 688 WIRE -544 768 -1072 768 WIRE -336 768 -336 656 WIRE -336 768 -544 768 WIRE -96 768 -96 704 WIRE -96 768 -336 768 WIRE -16 768 -16 608 WIRE -16 768 -96 768 WIRE 224 768 224 448 WIRE 224 768 -16 768 WIRE 784 768 224 768 WIRE 864 768 864 608 WIRE 864 768 784 768 WIRE 992 768 992 416 WIRE 992 768 864 768 WIRE 1072 768 1072 208 WIRE 1072 768 992 768 WIRE 1200 768 1200 720 WIRE 1200 768 1072 768 WIRE 784 816 784 768 FLAG 784 816 0 FLAG 176 -400 0 SYMBOL npn 160 320 R0 SYMATTR InstName Q1 SYMATTR Value 2N4401 SYMBOL npn 0 48 R0 SYMATTR InstName Q2 SYMATTR Value 2N4401 SYMBOL ind2 432 16 R0 SYMATTR InstName L1 SYMATTR Value 44µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL ind2 432 160 R0 SYMATTR InstName L2 SYMATTR Value 44µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL cap 208 112 R0 SYMATTR InstName C1 SYMATTR Value 2.2n SYMBOL ind2 608 64 R0 SYMATTR InstName L5 SYMATTR Value 4.4m SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL cap 768 80 R0 SYMATTR InstName C2 SYMATTR Value 220p SYMBOL diode 880 -16 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D1 SYMATTR Value 1N914 SYMBOL diode 880 -128 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D2 SYMATTR Value 1N914 SYMBOL diode 880 352 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D3 SYMATTR Value 1N914 SYMBOL diode 880 448 R180 WINDOW 0 24 64 Left 2 WINDOW 3 24 0 Left 2 SYMATTR InstName D4 SYMATTR Value 1N914 SYMBOL cap 960 -144 R0 SYMATTR InstName C3 SYMATTR Value 6.8n SYMBOL cap 976 352 R0 SYMATTR InstName C4 SYMATTR Value 6.8n SYMBOL cap 1056 144 R0 SYMATTR InstName C5 SYMATTR Value 100n SYMBOL res 1184 -192 R0 SYMATTR InstName R1 SYMATTR Value 1000k SYMBOL res 1184 384 R0 SYMATTR InstName P1a SYMATTR Value 5k SYMBOL res 1184 512 R0 SYMATTR InstName P1b SYMATTR Value 5k SYMBOL res 1184 624 R0 SYMATTR InstName R4 SYMATTR Value 15k SYMBOL ind2 -144 224 R180 WINDOW 0 36 80 Left 2 WINDOW 3 36 40 Left 2 SYMATTR InstName L3 SYMATTR Value 4µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL ind2 -144 368 R180 WINDOW 0 36 80 Left 2 WINDOW 3 36 40 Left 2 SYMATTR InstName L4 SYMATTR Value 4µ SYMATTR Type ind SYMATTR SpiceLine Rser=0.1 Cpar=1p SYMBOL ind 352 -464 R0 SYMATTR InstName L6 SYMATTR Value 270µ SYMATTR SpiceLine Rser=1 Cpar=1p SYMBOL polcap 160 -544 R0 WINDOW 3 24 56 Left 2 SYMATTR Value 47µ SYMATTR InstName C6 SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=4 Irms=0 Rser=2.4 Lser=0 mfg="AVX" pn="TAJB476M004" type="Tantalum" SYMBOL References\\LT1431 -704 592 R0 SYMATTR InstName U1 SYMBOL res -112 -528 R0 SYMATTR InstName R2 SYMATTR Value 5.1k SYMBOL res -112 608 R0 SYMATTR InstName R3 SYMATTR Value 22k SYMBOL res -896 -576 R0 SYMATTR InstName R5 SYMATTR Value 270 SYMBOL pnp -272 16 R180 SYMATTR InstName Q3 SYMATTR Value 2N3906 SYMBOL cap -544 368 R0 SYMATTR InstName C7 SYMATTR Value 10n SYMBOL res -896 -96 R0 SYMATTR InstName R6 SYMATTR Value 1k SYMBOL res -544 240 R0 SYMATTR InstName R7 SYMATTR Value 47k SYMBOL voltage -1072 128 R0 WINDOW 123 0 0 Left 2 WINDOW 39 0 0 Left 2 SYMATTR InstName V1 SYMATTR Value 9 SYMBOL FerriteBead -992 -592 R90 WINDOW 0 -16 0 VBottom 2 SYMATTR InstName L7 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL FerriteBead 368 -512 R180 SYMATTR InstName L8 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL FerriteBead 864 576 R180 SYMATTR InstName L9 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL FerriteBead 928 -272 R270 WINDOW 0 16 0 VTop 2 SYMATTR InstName L10 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL FerriteBead -928 -640 R90 WINDOW 0 -16 0 VBottom 2 SYMATTR InstName L13 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL polcap -16 -560 R0 WINDOW 3 24 56 Left 2 SYMATTR InstName C9 SYMATTR Value 1µ SYMATTR Description Capacitor SYMATTR Type cap SYMATTR SpiceLine V=16 Irms=0 Rser=11 Lser=0 mfg="AVX" pn="TAJA105K016" type="Tantalum" SYMBOL FerriteBead -224 496 R90 WINDOW 0 -16 0 VBottom 2 SYMATTR InstName L11 SYMATTR Value 3.642µ SYMATTR SpiceLine Ipk=0.2 Rser=0.6 Rpar=2700 Cpar=1.122p mfg="Wurth Elektronik" pn="742 792 092" SYMBOL cap -352 592 R0 SYMATTR InstName C8 SYMATTR Value 22n SYMBOL res -112 -176 R0 SYMATTR InstName R8 SYMATTR Value 5.1k SYMBOL pnp -272 -208 R180 SYMATTR InstName Q4 SYMATTR Value 2N3906 SYMBOL cap -768 -560 R0 SYMATTR InstName C10 SYMATTR Value 1µ SYMBOL cap -208 -480 R0 SYMATTR InstName C11 SYMATTR Value 100n SYMBOL cap 80 -544 R0 SYMATTR InstName C12 SYMATTR Value 100n SYMBOL ind -496 -448 R90 WINDOW 0 5 56 VBottom 2 WINDOW 3 32 56 VTop 2 SYMATTR InstName L12 SYMATTR Value 100µ SYMATTR SpiceLine Ipk=0.18 Rser=2.05 Rpar=43423 Cpar=1.37p mfg="Wurth Elektronik" pn="744031101 WE-TPC S" SYMBOL cap -32 544 R0 SYMATTR InstName C13 SYMATTR Value 100n TEXT 368 352 Left 2 !K1 L1 L2 L3 L4 L5 0.999 TEXT 552 104 Left 2 ;| TEXT 552 128 Left 2 ;| TEXT 536 104 Left 2 ;| TEXT 536 128 Left 2 ;| TEXT -728 816 Left 2 !.tran 0 100m 0 10n startup

--
Bill Sloman, Nijmegen
Reply to
Bill Sloman

Apparently, you did not run the simulation out to 100ms. Pretty crappy waveform out there.

Reply to
John S

e
e

I most certainly did run it out to 100msec, and I really didn't like the four cycle burst of 3.4MHz every time the Q1 and Q2 switched over.

It's very obvious on Ic(Q3).

If I'd put in even more time I might have been able to get rid of that too, but the circuit was already crawling with enough extra components that I really didn't see much point in struggling on.

Check out the new thread "A less squirrely cute little circuit" which follows up John Larkin's proposal.

I still rather like my pulse-width-modulated approach, but that's hard to model in LTSpice.

-- Bill Sloman, Nijmegen

Reply to
Bill Sloman

ElectronDepot website is not affiliated with any of the manufacturers or service providers discussed here. All logos and trade names are the property of their respective owners.